Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38695647

RESUMO

Ecological risk assessments for potential pesticide impacts on species listed as threatened or endangered must ensure that decisions to grant registration or establish water quality standards will not jeopardize species or their critical habitats. Pesticides are designed to affect pest species via physiological pathways that may be shared by some nontarget species for which toxicity data are usually unavailable, creating a need for robust methods to estimate acute and chronic toxicity with minimal data. We used a unique probabilistic approach to estimate the risk of chronic effects of two organophosphate (OP) pesticides on the vernal pool fairy shrimp Branchinecta lynchi. Acute toxicity estimates were derived from Monte Carlo (MC) sampling of acute toxicity distributions developed from interspecies relationships using surrogate species. Within each MC draw, acute values were divided by an acute to chronic ratio (ACR) sampled from a distribution of ACRs for OP pesticides and invertebrates, producing a distribution of chronic effects concentrations. The estimated exposure concentrations (EECs) were sampled from distributions representing different environmental conditions. Risk was characterized using probability distributions of acute toxicity, ACRs, and EECs in a probabilistic analysis, as well as partial probabilistic variations that used only some distributions whereas some variables were used deterministically. A deterministic risk quotient (RQ) was compared with the results of probabilistic methods to compare the approaches. Risk varied across exposure scenarios and the number of variables that were handled probabilistically, increasing as the number of variables drawn from distributions increased. The magnitude of RQs was not correlated with the probability that EECs would exceed chronic thresholds, and comparison of the two approaches demonstrates the limited interpretability of RQs. Our novel probabilistic approach to estimating chronic risk with minimal data incorporates uncertainty underlying both exposure and effects assessments for listed species. Integr Environ Assess Manag 2024;00:1-13. Published 2024. This article is a U.S. Government work and is in the public domain in the USA.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38597778

RESUMO

Amphibians worldwide are threatened by habitat loss, some of which is driven by a changing climate, as well as exposure to pesticides, among other causes. The timing and duration of the larval development phase vary between species, thereby influencing the relative impacts of stochastic hydroregime conditions as well as potential aquatic pesticide exposure. We describe the stages of breeding through metamorphosis for eight amphibian species, based on optimal hydroregime conditions, and use a model of pesticide fate and exposure representative of central Florida citrus groves to simulate hydrodynamics based on observed weather data over a 54-year period. Using the Pesticide in Water Calculator and Plant Assessment Tool, we estimated daily wetland depth and pyraclostrobin exposure, with label-recommended application quantities. Species' timing and duration of larval development determined the number of years of suitable hydroregime for breeding and the likelihood of exposure to peak aquatic concentrations of pyraclostrobin. Although the timing of pesticide application determined the number of surviving larvae, density-dependent constraints of wetland hydroregime also affected larval survival across species and seasons. Further defining categorical amphibian life history types and habitat requirements supports the development of screening-level assessments by incorporating environmental stochasticity at the appropriate temporal resolution. Subsequent refinement of these screening-level risk assessment strategies to include spatially explicit landscape data along with terrestrial exposure estimates would offer additional insights into species vulnerability to pesticide exposure throughout the life cycle. Computational simulation of ecologically relevant exposure scenarios, such as these, offers a more realistic interpretation of differential agrichemical risk among species based on their phenology and habits and provides a more situation-specific risk assessment perspective for threatened species. Integr Environ Assess Manag 2024;00:1-10. Published 2024. This article is a U.S. Government work and is in the public domain in the USA.

3.
Sci Total Environ ; 857(Pt 1): 159274, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36208758

RESUMO

Spatially explicit ecological risk assessment (ERA) requires estimating the overlap between chemical and receptor distribution to evaluate the potential impacts of exposure on nontarget organisms. Pesticide use estimation at field level is prone to error due to inconsistencies between ground-reporting and geospatial data coverage; attempts to rectify these inconsistencies have been limited in approach and rarely scaled to multiple crop types. We built upon a previously developed Bayesian approach to combine multiple crop types for a probabilistic determination of field-crop assignments and to examine co-occurrence of critical vernal pool habitats and bifenthrin application within a 5-county area in California (Madera, Merced, Sacramento, San Joaquin, and Stanislaus counties). We incorporated a multi-scale repeated sampling approach with an area constraint to improve the delineation of field boundaries and better capture variability in crop assignments and rotation schemes. After comparing the accuracy of the spatial probabilistic approach to USDA Census of Agriculture crop acreage data, we found our approach allows more specificity in the combination of crop types represented by the potential application area and improves acreage estimates when compared to traditional deterministic approaches. In addition, our multi-scale sampling scheme improved estimates of bifenthrin acreage variability for co-occurrence analysis and allowed for estimates of crop rotations that were previously uncaptured. Our approach could be leveraged for more realistic, spatially resolved exposure and effects models both in and outside of California.


Assuntos
Praguicidas , Praguicidas/análise , Teorema de Bayes , Agricultura , Ecossistema , California
4.
Ecologies (Basel) ; 3: 308-322, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-36570979

RESUMO

Vernal pool fairy shrimp, Branchinecta lynchi, is a freshwater crustacean endemic to California and Oregon, including California's Central Valley. B. lynchi is listed as a Federally Threatened species under the US Endangered Species Act, and as a vulnerable species on the IUCN Red List. Threats that may negatively impact vernal pool fairy shrimp populations include pesticide applications to agricultural land use (e.g., agrochemicals such as organophosphate pesticides) and climate changes that impact vernal pool hydrology. Pop-GUIDE (Population model Guidance, Use, Interpretation, and Development for Ecological risk assessment) is a comprehensive tool that facilitates development and implementation of population models for ecological risk assessment and can be used to document the model derivation process. We employed Pop-GUIDE to document and facilitate the development of a population model for investigating impacts of organophosphate pesticides on vernal pool fairy shrimp populations in California's Central Valley. The resulting model could be applied in combination with field assessment and laboratory-based chemical analysis to link effects from pesticide exposure to adverse outcomes in populations across their range. B. lynchi has a unique intra-annual life cycle that is largely dependent upon environmental conditions. Future deployment of this population model should include complex scenarios consisting of multiple stressors, whereby the model is used to examine scenarios that combine chemical stress resulting from exposure to pesticides and climate changes.

5.
Mar Pollut Bull ; 159: 111387, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32827871

RESUMO

Coral reef ecosystems are declining due to multiple interacting stressors. A bioassessment framework focused on stressor-response associations was developed to help organize and communicate complex ecological information to support coral reef conservation. This study applied the Biological Condition Gradient (BCG), initially developed for freshwater ecosystems, to fish assemblages of U.S. Caribbean coral reef ecosystems. The reef fish BCG describes how biological conditions changed incrementally along a gradient of increasing anthropogenic stress. Coupled with physical and chemical water quality data, the BGC forms a scientifically defensible basis to prioritize, protect and restore water bodies containing coral reefs. Through an iterative process, scientists from across the U.S. Caribbean used fishery-independent survey data and expert knowledge to develop quantitative decision rules to describe six levels of coral reef ecosystem condition. The resultant reef fish BCG provides an effective tool for identifying healthy and degraded coral reef ecosystems and has potential for global application.


Assuntos
Antozoários , Recifes de Corais , Animais , Região do Caribe , Ecossistema , Peixes , Índias Ocidentais
6.
Environ Pollut ; 257: 113486, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31813706

RESUMO

Vernal pools are ephemeral wetlands that provide critical habitat to many listed species. Pesticide fate in vernal pools is poorly understood because of uncertainties in the amount of pesticide entering these ecosystems and their bioavailability throughout cycles of wet and dry periods. The Pesticide Water Calculator (PWC), a model used for the regulation of pesticides in the US, was used to predict surface water and sediment pore water pesticide concentrations in vernal pool habitats. The PWC model (version 1.59) was implemented with deterministic and probabilistic approaches and parameterized for three agricultural vernal pool watersheds located in the San Joaquin River basin in the Central Valley of California. Exposure concentrations for chlorpyrifos, diazinon and malathion were simulated. The deterministic approach used default values and professional judgment to calculate point values of estimated concentrations. In the probabilistic approach, Monte Carlo (MC) simulations were conducted across the full input parameter space with a sensitivity analysis that quantified the parameter contribution to model prediction uncertainty. Partial correlation coefficients were used as the primary sensitivity metric for analyzing model outputs. Conditioned daily sensitivity analysis indicates curve number (CN) and the universal soil loss equation (USLE) parameters as the most important environmental parameters. Therefore, exposure estimation can be improved efficiently by focusing parameterization efforts on these driving processes, and agricultural pesticide inputs in these critical habitats can be reduced by best management practices focused on runoff and sediment reductions.


Assuntos
Praguicidas/análise , Poluentes Químicos da Água/análise , Agricultura , California , Clorpirifos/análise , Ecossistema , Monitoramento Ambiental , Solo , Movimentos da Água , Áreas Alagadas
7.
Coast Manage ; 47(5): 429-452, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31595103

RESUMO

States and other jurisdictions may protect coral reefs using biological water quality standards outlined by the United States Clean Water Act (CWA). Such protection will require long-term, regional monitoring of the resource using biological indicators and a probability-based sampling design. A 60-station survey targeting nearshore linear coral reef was conducted across southern Puerto Rico in December 2011 to document the status of reef inhabitants using a probabilistic, regional sampling design. The quantity, type and condition of stony corals, fish, gorgonians and sponges were documented from each station, providing a robust representation of linear reef status and composition across the region. Fish represented 106 unique taxa and stony corals 32 unique taxa. Benthic organisms (stony corals, sponges and gorgonians) averaged nearly 12 colonies per square meter, more than half of which were gorgonians. Assessment results can be used as a baseline to compare with future regional surveys to quantify change in reef condition over time (trend). Both temporal and spatial changes can be expected after large-scale disturbances like hurricanes Maria and Irma in 2017. The indicators and probabilistic sampling design support the long-term regional monitoring envisioned by the Environmental Protection Agency to implement CWA protections in Puerto Rico and elsewhere.

8.
Sci Total Environ ; 663: 465-478, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30716638

RESUMO

The protection of listed species through the Ecological Risk Assessment (ERA) process is encumbered by the number and diversity of species that need protection and the limited data available to inform assessments. Ecological communities within isolated ecosystems often contain a number of biologically diverse endemic, endangered, and threatened species, as well as providing numerous ecosystem services (ES). We propose an approach that develops community-level protection goals using isolated wetlands that includes both listed species and Service Providing Units (SPUs) that drive ES for ecological risk assessments (ERAs). Community-level protection goals are achieved by developing a protection community and weighing lines of evidence to determine a set of focal species within that community upon which to base the assessment. Lines of evidence include chemical mechanism of action, likely routes of exposure, and taxa susceptibility, as well as relationships among species, and other ecological factors. We demonstrate the process using case studies of chlorpyrifos in California vernal pools and coal ash effluent in Carolina bays. In the California vernal pool case study, listed species were the primary SPUs for the ES provided by the critical habitat. The weight of evidence demonstrated the honey bee as the focal species for the terrestrial environment and the vernal pool fairy shrimp as the focal species for the aquatic environment. The protection community within the Carolina bay case study was more taxonomically diverse than vernal pools for both listed species and SPUs, with amphibians identified as the focal species for which to target mitigation goals and hazard levels. The approach presented here will reduce the time and resource investment required for assessment of risk to listed species and adds an ES perspective to demonstrate value of assessments beyond listed species concerns.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Espécies em Perigo de Extinção , Áreas Alagadas , California
9.
Environ Monit Assess ; 186(11): 7165-81, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25052328

RESUMO

States may protect coral reefs using biological water quality standards outlined by the Clean Water Act. This requires biological assessments with indicators sensitive to human disturbance and regional, probability-based survey designs. Stony coral condition was characterized on a regional scale for the first time in the nearshore waters of the US Virgin Islands (USVI). Coral composition, abundance, size, and health were assessed at 66 stations in the St. Croix region in fall 2007 and at 63 stations in the St. Thomas and St. John region in winter 2009. Indicators were chosen for their sensitivity to human disturbance. Both surveys were probability-based (random) designs with station locations preselected from areas covered by hardbottom and coral reef substrate. Taxa richness was as high as 21 species but more than half the area of both regions exhibited taxa richness of <10 species in the 25 m(2) transect area. Coral density was as high as 5 colonies m(-2) but more than half the area of both regions had <2 colonies m(-2). Both regions showed similar dominant species based on frequency of occurrence and relative abundance. Because of large colony sizes, Montastrea annularis provided more total surface area and live surface area than more abundant species. The surveys establish baseline regional conditions and provide a foundation for long-term regional monitoring envisioned by the USVI Department of Planning and Natural Resources. The probabilistic sampling design assures the data can be used in Clean Water Act reporting.


Assuntos
Antozoários/classificação , Recifes de Corais , Monitoramento Ambiental , Animais , Antozoários/crescimento & desenvolvimento , Conservação dos Recursos Naturais , Coleta de Dados , Ilhas , Estações do Ano , Ilhas Virgens Americanas , Qualidade da Água
15.
Aquat Toxicol ; 64(4): 363-73, 2003 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-12878408

RESUMO

Bivalve mollusks such as Crassostrea virginica inhabiting polluted estuaries and coastal areas may bioaccumulate high concentrations of contaminants without apparent ill effects. However, changes in putative internal defense activities have been associated with contaminant accumulation in both experimental and long-term field exposures. In an effort to elucidate these relationships, 40 oysters were collected from Bayou Chico (BC) and East Bay (EB) in Pensacola Bay, FL, two estuaries known to differ in the type and magnitude of chemical contaminants present. Oyster tissue concentrations of metals, tri- and dibutyltin (TBT, DBT), polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) were measured in individual oysters, as were hemocyte counts (HCs), hemocyte bacterial killing indices (KI), serum lysozyme (LYS) and serum protein (PRO) levels. Average HC, KI, LYS and PRO were significantly higher in BC oysters, which also had significantly higher tissue concentrations of total trace metals, butyltins (BTs), PAHs, PCBs, pesticides, and Mn, Cu, Zn and Sn. EB oysters had low organic contaminant levels and no detectable BTs, but significantly higher concentrations of Al, Cr, Fe, Ag, Cd, and Hg. Simple correlation analysis between specific defense measurements and specific chemical analytes showed specific positive relationships that corroborated previous findings in other FL estuaries. Canonical correlation analysis was used to examine relationships between defense measurements and tissue metals using linearly combined sets of variables. Results were also consistent with previous findings-the highest possible canonical correlation was positive: r=0.864, P<0.0019 among canonical variables composed of HC, KI and LYS for defense, and Fe, Cu, Ag, Cd, Sb, Sn, Ni, Pb and Hg for metals.


Assuntos
Atividade Bactericida do Sangue/efeitos dos fármacos , Hemócitos/efeitos dos fármacos , Hemócitos/imunologia , Ostreidae/imunologia , Bifenilos Policlorados/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes da Água/toxicidade , Animais , Florida , Metais/toxicidade , Muramidase/sangue , Muramidase/efeitos dos fármacos , Compostos Orgânicos/toxicidade , Compostos Organometálicos/toxicidade , Compostos Orgânicos de Estanho/toxicidade , Água do Mar/química , Estatística como Assunto , Compostos de Trialquitina/toxicidade
16.
Aquat Toxicol ; 64(4): 375-91, 2003 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-12878409

RESUMO

A positive association between chemical contaminants and defense factors has been established for eastern oysters (Crassostrea virginica) from Florida, but it is unknown whether such factors can be stimulated through short-term exposure to contaminants in the field. Hatchery oysters were deployed at two contaminated sites and one reference site near Pensacola, Florida, during spring and summer in 1998. Putative defense measurements, notably hemocyte count and bactericidal activity, were significantly elevated after 12-week deployment during summer at the most contaminated site. This site exhibited a dramatic increase in chemical concentrations in oyster tissue relative to both the initial concentrations in hatchery oysters and to oysters deployed at the reference site. Hemocyte activity was not stimulated after 16-week deployment of hatchery oysters in spring, despite similar increases in tissue chemical concentrations, so defense activation by short-term exposure may covary with other unmeasured environmental or physiological parameters. Using the converse approach, Pensacola Bay oysters were collected from two contaminated sites and deployed at the reference site for 16 weeks during spring. Results from this converse deployment were ambiguous; serum lysozyme concentrations were reduced for oysters transplanted from both sites, but hemocyte activities were not significantly changed. The principal outcome from this study was the demonstration of enhanced defense activities for oysters upon short-term summer deployment at a contaminated site.


Assuntos
Atividade Bactericida do Sangue/efeitos dos fármacos , Hemócitos/efeitos dos fármacos , Hemócitos/imunologia , Metais/toxicidade , Compostos Orgânicos/toxicidade , Ostreidae/imunologia , Poluentes da Água/toxicidade , Adaptação Fisiológica , Análise de Variância , Animais , Compostos Organometálicos/toxicidade , Bifenilos Policlorados/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Água do Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...